
 IJTEMT; www.ijtemt.org; ISSN: 2321-5518; Vol. II, Issue IV, Aug 2013

 INDEXING: IC Value (6.14), Ulrich, DOAJ, Google Scholar, J-Gate, Scribd., .Docstoc and Slideshare ;Vol. II, Issue IV, Aug 2013

P
a

g
e
7

2

P

a
g

e
7

2

A REVIEW ON SOFTWARE ARCHITECTURE

Subodh Prasad
Information Technology Department

Amrapali Institute of Technology & Sciences
Haldwani, Uttarakhand, India

Abstract— Software Architecture is a sub discipline of Software
Engineering. The term software architecture intuitively denotes
the high level structures of a software system. It can be defined as
the set of structures needed to reason about the software system,
which comprise the software elements, the relations between
them, and the properties of both elements and relations. The
term software architecture also denotes the set of practices used
to select, define or design a software architecture. Finally, the
term often denotes the documentation of a system's "software
architecture". Documenting software architecture facilitates
communication between stakeholders, captures early decisions
about the high-level design, and allows reuse of design
components between projects.

Keywords-Software Architecture; Components; Characteristics
(key words)

I. INTRODUCTION

To date there is still no agreement on the precise definition
of software architecture. Opinions vary as to what is
architectural in the software world like:

i. Overall, macroscopic system structure; this refers to
architecture as a higher level abstraction of a software system
that consists of high-level components and connectors, as
opposed to implementation details.

ii. The important stuff - whatever that is; this refers to the
fact that software architects should concern themselves with
those decisions that have high impact on the system and its
stakeholders—which may include apparently low-level details.

iii. That which is fundamental to understanding a system in
its environment.

iv. Things that people perceive as hard to change; since
designing the architecture takes place at the beginning of a
software system's lifecycle, the architect should focus on
decisions that “have to” be right the first time, since reversing
such decisions may be impossible or prohibitively expensive.

v. A set of architectural design decisions; software
architecture should not be considered merely a set of models or
structures, but should include the decisions that lead to these
particular structures, and the rationale behind them. This
insight has led to substantial research into software architecture
knowledge management.

There is no sharp distinction between software architecture
versus design and requirements engineering. They are all part

of a “chain of intentionality” from high-level intentions to low-
level details..

II. SOFTWARE ARCHITECTURE CHARACTERISTICS

Software architecture exhibits the following characteristics.

i. Multitude of stakeholders: Software systems have to
cater to a variety of stakeholders such as business managers,
owners, users and operators. These stakeholders all have their
own concerns with respect to the system. Balancing these
concerns and demonstrating how they are addressed is part of
designing the system. This implies that architecture involves
dealing with a broad variety of concerns and stakeholders, and
has a multidisciplinary nature.

ii. Separation of concerns: The established way for
architects to reduce complexity is by separating the concerns
that drive the design. Architecture documentation shows that
all stakeholder concerns are addressed by modelling and
describing the architecture from separate points of view
associated with the various stakeholder concerns. These
separate descriptions are called architectural views.

iii. Quality-driven: Classical software design approaches
like the Jackson Structured Programming were driven by
required functionality and the flow of data through the system,
but the current insight is that the architecture of a software
system is more closely related to its quality attributes such as
fault-tolerance, backward compatibility, extensibility,
reliability, maintainability, availability, security, usability, and
other such – ilities. Stakeholder concerns often translate into
requirements on these quality attributes, which are variously
called non-functional requirements, extra-functional
requirements, system quality requirements or constraints.

iv. Recurring styles: Like building architecture, the
software architecture discipline has developed standard ways to
address recurring concerns. These “standard ways” are called
by various names at various levels of abstraction. Common
terms for recurring solutions are architectural style, strategy or
tactic, reference architecture and architectural pattern.

v. Conceptual Integrity: A term introduced by Fred
Brooks in The Mythical Man-Month to denote the idea that the
architecture of a software system represents an overall vision of
what it should do and how it should do it. This vision should be
separated from its implementation. The architect assumes the

 IJTEMT; www.ijtemt.org; ISSN: 2321-5518; Vol. II, Issue IV, Aug 2013

 INDEXING: IC Value (6.14), Ulrich, DOAJ, Google Scholar, J-Gate, Scribd., .Docstoc and Slideshare ;Vol. II, Issue IV, Aug 2013

P
a

g
e
7

3

P

a
g

e
7

3

role of “keeper of the vision”, making sure that additions to the
system are in line with the architecture, hence preserving
conceptual integrity.

III. ARCHITECTURE DEFINES STRUCTURE

A lot of time of any software architect gets into how to
partition any particular application into different coherent sets
of interrelated components, modules, objects or any other unit
of software partitioning. The architecture of the resulting
software must be kept in mind at all the times, that, what are
functionalities that the software promises to provide in the
future, how the resultant software will be better, efficient and
error free.

Take an example: An organization has a software
requirement which takes in the data from various web servers
across the globe. This data has then to be compiled to form
metadata at one final destination. This compiled data implies
some information and this information finally developed has to
provide the next task for all the web server managers across the
globe. This task is repeated in that particular organization every
day. Such kind of data interchanging and data implications lead
to various kinds of constraints like; structural and functional
constraints. Other important factors include application update
in one place at one time, multiple web server dependency may
lead to violation of ACID property of database. So all these
factors have to be kept in mind while the application is in the
development phase and modules are created for the
development. It is the responsibility of the software architect to
analyse all such future constraints and assign responsibilities to
each constituent component. In partitioning an application, the
architect assigns responsibilities to each constituent
component. These responsibilities define the tasks a component
can be relied upon to perform within the application.

By using the above mentioned method it is ensured that each
component plays a specific role in the application, and the
overall component ensemble that comprises the architecture
collaborates to provide the required functionality.
Responsibility-driven design is a technique from object-
orientation that can be used effectively to help define the key
components in any architecture. It provides a method based on
informal tools and techniques that emphasize architectural and
behavioral modelling using objects, responsibilities and
collaborations. A key structural issue for nearly all applications
is minimizing dependencies between building blocks or
modules a.k.a. components, creating as much loosely coupled
architecture as possible from a set of highly cohesive
components. Such modules ensure that the change in one
module does not induce a change in the other module and
hence these modules are secure to be worked upon and worked
with. But when the change in one module or component
induces a change in other one it is said to be a dependency. By
removing unnecessary dependencies, changes are not
propagated throughout the architecture

Fig 1.2: Different types of component/module dependencies.

Excessive dependencies pose a big problem when it comes
to creating a good architecture as the future change in an
implied module will lead to a change in most of the implying
module. So, excessive dependency makes it difficult,
expensive, erroneous, tedious and time-consuming to make
changes to system.

IV. ARCHITECTURE SPECIFIES COMPONENT

COMMUNICATION

Whenever the development phase of any software is going
on, it is divided into modules as discussed already. This
division into modules, makes the individual module dataflow
and communication flow a difficult issue. Therefore it has to be
seen that the modules can communicate with each other at the
required point of time. As well as the dataflow in between the
modules has to be taken care of. If the modules can
communicate between each other and transfer data amongst
each other at all points of time after the development of the
software, the development is said to be a success.

To carry out such communication and data flow between
modules, several types of methods can be used like: They may
execute in different threads or processes, and communicate
through synchronization mechanisms. Or multiple components
may need to be simultaneously informed when an event occurs
in the application’s environment. There are many other
possibilities as well. Discussing further about communication
and data flow between modules, it can be said that a particular
class of development takes care of it. This particular class of
software is called “architectural patterns” or “architectural
styles”. These patterns are essentially reusable architectural
blueprints that describe the structure and interaction between
collections of participating components. Each pattern has well-
known characteristics that make it appropriate to use in
satisfying particular types of requirements. For example, the
client–server pattern has several useful characteristics, such as
synchronous request–reply communications from client to
server, and servers supporting one or more clients through a
published interface. Optionally, clients may establish sessions
with servers, which may maintain state about their connected
clients. Client–server architectures must also provide a
mechanism for clients to locate servers, handle errors, and

 IJTEMT; www.ijtemt.org; ISSN: 2321-5518; Vol. II, Issue IV, Aug 2013

 INDEXING: IC Value (6.14), Ulrich, DOAJ, Google Scholar, J-Gate, Scribd., .Docstoc and Slideshare ;Vol. II, Issue IV, Aug 2013

P
a

g
e
7

4

P

a
g

e
7

4

optionally provide security on server access. All these issues
are addressed in the client–server architecture pattern.

The power of patterns comes from the development
objectives, utility, robustness, ability to convey design
information as well as data information within the components
/ modules. Patterns are proven to work. If used appropriately in
an architecture, you leverage existing design knowledge by
using patterns. Large systems tend to use multiple patterns,
combined in ways that satisfy the architecture requirements.
When an architecture is based around patterns, it also becomes
easy for team members to understand a design, as the pattern
infers component structure, communications and abstract
mechanisms that must be provided. When someone tells me
their system is based on a three-tier client–server architecture, I
know immediately a considerable amount about their design.
This is a very powerful communication mechanism indeed.

V. ARCHITECTURE ADDRESSES NONFUNCTIONAL

REQUIREMENTS

Nonfunctional requirements are those requirements which
don’t appear in use cases. They are always concerned with how
the application provides the required functionality. There are
three distinct areas of nonfunctional requirements:

a. Technical constraints: They constrain design options by
specifying certain technologies that the application must use.
“We only have Java developers, so we must develop in Java”.
“The existing database runs on Windows XP only”. These are
usually nonnegotiable.

b. Business constraints: These too constraint design options,
but for business, not technical reasons. For example, “In order
to widen our potential customer base, we must interface with
XYZ tools”. Another example is “The supplier of our
middleware has raised prices prohibitively, so we’re moving to

an open source version”. Most of the time, these too are
nonnegotiable.

c. Quality attributes: These define an application’s
requirements in terms of scalability, availability, ease of
change, portability, usability, performance, and soon. Quality
attributes address issues of concern to application users, as well
as other stakeholders like the project team itself or the project
sponsor.

An application architecture must therefore explicitly address
these aspects of the design. Architects need to understand the
functional requirements, and create a platform that supports
these and simultaneously satisfies the nonfunctional
requirements

REFERENCES
[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,.

Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. John Wiley & Sons, 1996.

[2] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann. Pattern-Oriented
Software Architecture, Volume 2, Patterns for Concurrent and
Networked Objects. John Wiley & Sons, 2000.

[3] M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002.

[4] G. Hohpe, B. Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[5] P. Tran, J. Gosper, I. Gorton. Evaluating the Sustained Performance of
COTS-based Messaging Systems. in Software Testing, Verification and
Reliability, vol 13, pp 229–240, Wiley and Sons, 2003

[6] I. Gorton, A. Liu. Performance Evaluation of Alternative Component
Architectures for Enterprise JavaBean Applications, in IEEE Internet
Computing, vol.7, no. 3, pages 18–23, 2003.

[7] A. Liu, I. Gorton. Accelerating COTS Middleware Technology
Acquisition: the i-MATE Process. in IEEE Software, pages 72–
79,volume 20, no. 2, March/April 2003.

