@mm [JTEMT; www.ijtemt.org; ISSN: 2321-5518; Vol. I, Issue IV, Aug 2013

A REVIEW ON SOFTWARE ARCHITECTURE

Subodh

Prasad

Information Technology Department
Amrapali Institute of Technology & Sciences
Haldwani, Uttarakhand, India

Abstract— Software Architecture is a sub discipline of Softare

Engineering. The term software architecture intuitively denotes
the high level structures of a software system. itan be defined as
the set of structures needed to reason about thefspare system,
which comprise the software elements, the relationbetween
them, and the properties of both elements and relans. The
term software architecture also denotes the set giractices used
to select, define or design a software architectureFinally, the

term often denotes the documentation of a system'software

architecture". Documenting software architecture feilitates

communication between stakeholders, captures earlgecisions
about the high-level design, and allows reuse of sign
components between projects.

Keywords-Software Architecture; Components; Characteristics
(key words)

. INTRODUCTION

To date there is still no agreement on the predisimition
of software architecture. Opinions vary as to what
architectural in the software world like:

i. Overall, macroscopic system structure; this nefeo
architecture as a higher level abstraction of sk system
that consists of high-level components and conmgctas
opposed to implementation details.

ii. The important stuff - whatever that is; thidees to the
fact that software architects should concern thérasewith
those decisions that have high impact on the systethits
stakeholders—which may include apparently low-lelathils.

iii. That which is fundamental to understandingyatem in
its environment.

iv. Things that people perceive as hard to chasgee
designing the architecture takes place at the beginof a
software system's lifecycle, the architect shoutdug on
decisions that “have to” be right the first timece reversing
such decisions may be impossible or prohibitivelyensive.

v. A set of architectural design decisions; softwar
architecture should not be considered merely afsgiodels or
structures, but should include the decisions teatl lto these
particular structures, and the rationale behindmthdhis
insight has led to substantial research into soéveachitecture
knowledge management.

There is no sharp distinction between software itacture
versus design and requirements engineering. Treewlapart

of a “chain of intentionality” from high-level intéions to low-
level details..

Il. SOFTWARE ARCHITECTURE CHARACTERISTICS

Software architecture exhibits the following chagsistics.

i. Multitude of stakeholders: Software systems have to
cater to a variety of stakeholders such as busimessagers,
owners, users and operators. These stakeholdens\al their
own concerns with respect to the system. Balantivese
concerns and demonstrating how they are addressealt of
designing the system. This implies that architectumvolves
dealing with a broad variety of concerns and stakdrs, and
has a multidisciplinary nature.

ii. Separation of concerns: The established way for
architects to reduce complexity is by separatirgy cncerns
that drive the design. Architecture documentatiboves that
all stakeholder concerns are addressed by modebing
describing the architecture from separate points viefw
associated with the various stakeholder concerrisesd
separate descriptions are called architecturalsiew

iii. Quality-driven: Classical software design approaches
like the Jackson Structured Programming were drign
required functionality and the flow of data throutje system,
but the current insight is that the architectureao$oftware
system is more closely related to its quality httrés such as
fault-tolerance, backward compatibility, extenstijl
reliability, maintainability, availability, secuyit usability, and
other such — ilities. Stakeholder concerns oftamdiate into
requirements on these quality attributes, which \aeously
called non-functional requirements, extra-functiona
requirements, system quality requirements or caims:.

iv. Recurring styles: Like building architecture, the
software architecture discipline has developeddstahways to
address recurring concerns. These “standard wagstalled
by various names at various levels of abstract@ommon
terms for recurring solutions are architecturalestgtrategy or
tactic, reference architecture and architecturdepa al

v. Conceptual Integrity: A term introduced by Fr
Brooks in The Mythical Man-Month to denote the ideat th
architecture of a software system represents aralbwésion of
what it should do and how it should do it. Thisaisshould be
separated from its implementation. The architestuiams the

bD
o
=9

M(‘\m INDEXING: IC Value (6.14)Dlrich, DOA], Google Scholar, J-Gate, Scribd., .Docstoc and Slideshare ;Vol. II, Issue 1V, Aug 2013

@mm [JTEMT; www.ijtemt.org; ISSN: 2321-5518; Vol. I, Issue IV, Aug 2013

role of “keeper of the vision”, making sure thatgidns to the
system are in line with the architecture, hencesqméng
conceptual integrity.

Ill. ARCHITECTUREDEFINESSTRUCTURE

A lot of time of any software architect gets intowhto
partition any particular application into differecbherent sets
of interrelated components, modules, objects orathgr unit
of software partitioning. The architecture of thesulting
software must be kept in mind at all the timest,tivdat are
functionalities that the software promises to pdeviin the
future, how the resultant software will be betefficient and
error free.

Take an example: An organization has a software

requirement which takes in the data from varioud wervers
across the globe. This data has then to be compilddrm
metadata at one final destination. This compileth diaplies
some information and this information finally demeéd has to
provide the next task for all the web server marsmgeross the
globe. This task is repeated in that particulaaoization every
day. Such kind of data interchanging and data rafiins lead
to various kinds of constraints like; structuradafunctional
constraints. Other important factors include agpiann update
in one place at one time, multiple web server ddpeaoy may
lead to violation of ACID property of database. &bthese
factors have to be kept in mind while the applamatis in the
development phase and modules are created for
development. It is the responsibility of the softevarchitect to
analyse all such future constraints and assigroressipilities to
each constituent component. In partitioning an iappbn, the
architect assigns responsibilities to each cormstitu
component. These responsibilities define the tast@mponent
can be relied upon to perform within the applicatio

By using the above mentioned method it is ensunat éach
component plays a specific role in the applicatiand the
overall component ensemble that comprises the tacothre
collaborates to provide the required
Responsibility-driven design is a technique fromjeob
orientation that can be used effectively to helfindethe key
components in any architecture. It provides a nethesed on
informal tools and techniques that emphasize achital and
behavioral modelling using objects, responsibsitieand
collaborations. A key structural issue for neatlyagplications
is minimizing dependencies between building bloaks
modules a.k.a. components, creating as much locselgled
architecture as possible from a set of highly civlees
components. Such modules ensure that the changenen
module does not induce a change in the other moaute
hence these modules are secure to be worked uplowaked

functionality.

Third Party
Component l
Third Party
Four components are directly Component

dependent on a third party
component. If the third party
component is replaced with a] Component
new component with a s

different interface, changes party component is replaced,

to each component are likely. changes are restricted to the AL

—— Dependency component only

Di K
\agram Key Only the AL (abstraction layer)

component is directly dependent on
the third party component. If the third

Fig 1.2: Different types of component/module degeriks.

Excessive dependencies pose a big problem whemies
to creating a good architecture as the future ohangan
implied module will lead to a change in most of timplying
module. So, excessive dependency makes it difficult
expensive, erroneous, tedious and time-consumingage
changes to system.

IV. ARCHITECTURESPECIFIESCOMPONENT
COMMUNICATION

Whenever the development phase of any softwareiigg

on, it is divided into modules as discussed alreatlyis

thvision into modules, makes the individual moddkaflow

and communication flow a difficult issue. Therefdrbas to be
seen that the modules can communicate with eadr aththe
required point of time. As well as the dataflowbietween the
modules has to be taken care of. If the modules can
communicate between each other and transfer datangsn
each other at all points of time after the develeptrof the
software, the development is said to be a success.

To carry out such communication and data flow betwe
modules, several types of methods can be usedTh&y may
execute in different threads or processes, and conuvate
through synchronization mechanisms. Or multiple ponents
may need to be simultaneously informed when anteseurs
in the application’s environment. There are manyeot
possibilities as well. Discussing further about camication
and data flow between modules, it can be saidahgrticular
class of development takes care of it. This paeicualass of
software is called “architectural patterns” or ‘fatectural
styles”. These patterns are essentially reusalhitactural
blueprints that describe the structure and intemadbetween
collections of participating components. Each patteas well-
known characteristics that make it appropriate & un
satisfying particular types of requirements. Foaraeple, the

with. But when the change in one module or compbnerclient—server pattern has several useful charatiesj such as

induces a change in other one it is said to bepartiency. By
removing unnecessary dependencies, changes are
propagated throughout the architecture

X

_"
_41/

M(

INDEXING: IC Value (6.14)Dlrich, DOA], Google Scholar,

synchronous request—reply communications from tlitn
s@rver, and servers supporting one or more cligmtsugh &Y
published interface. Optionally, clients may essibkessiold>~
with servers, which may maintain state about theitnected &,
clients. Client-server architectures must also ip®va &
mechanism for clients to locate servers, handlergrrand

J-Gate, Scribd., .Docstoc and Slideshare ;Vol. 1], Issue IV, Aug 2013

m» IJTEMT; www.ijtemt.org; ISSN: 2321-5518; Vol. II, Issue IV, Aug 2013

optionally provide security on server access. Aise issues
are addressed in the client—server architectuterpat

The power of patterns comes from the development c.

objectives, utility, robustness, ability to convegesign

information as well as data information within tt@mponents
/ modules. Patterns are proven to work. If useda@pjately in

an architecture, you leverage existing design kadgeé by

using patterns. Large systems tend to use mulppléerns,

combined in ways that satisfy the architecture irequents.

When an architecture is based around patternksatteecomes
easy for team members to understand a designeagattern

infers component structure, communications and radist
mechanisms that must be provided. When someore rtedl

their system is based on a three-tier client—seaxahitecture, |
know immediately a considerable amount about tHegign.

This is a very powerful communication mechanisnegul

V. ARCHITECTUREADDRESSESNONFUNCTIONAL
REQUIREMENTS

Nonfunctional requirements are those requiremeritictw
don’t appear in use cases. They are always corct@ritie how
the application provides the required functionalithere are
three distinct areas of nonfunctional requirements:

a. Technical constraints: They constrain desigiooptby
specifying certain technologies that the applicatioust use.
“We only have Java developers, so we must develqlava”.
“The existing database runs on Windows XP only"eSé are
usually nonnegotiable.

b. Business constraints: These too constraint degtons,
but for business, not technical reasons. For exanifsl order
to widen our potential customer base, we must fister with
XYZ tools”. Another example is “The supplier of our
middleware has raised prices prohibitively, so weafroving to

\‘\;

M

an open source version”. Most of the time, these #&oe

nonnegotiable.

Quality attributes: These define an applicagon
requirements in terms of scalability, availabilitgase of

change, portability, usability, performance, andrsoQuality

attributes address issues of concern to applicasens, as well
as other stakeholders like the project team itzethe project

sponsor.

An application architecture must therefore exgicddress
these aspects of the design. Architects need terstathd the
functional requirements, and create a platform #haiports
these and simultaneously satisfies the nonfundtiona
requirements

REFERENCES

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerldd, Stal,.
Pattern-Oriented Software Architecture, Volume 1: System of
Patterns. John Wiley & Sons, 1996.

D. Schmidt, M. Stal, H. Rohnert, F. Buschmann. éatOriented
Software Architecture, Volume 2, Patterns for Coneot and
Networked Objects. John Wiley & Sons, 2000.

M. Fowler. Patterns of Enterprise Application Areleture. Addison-
Wesley, 2002.

G. Hohpe, B. Woolf. Enterprise Integration Patteri@esigning,
Building, and Deploying Messaging Solutions. Addid&'esley, 2003.

P. Tran, J. Gosper, |. Gorton. Evaluating the SusthPerformance of
COTS-based Messaging Systems. in Software Tedfegfication and
Reliability, vol 13, pp 229-240, Wiley and Sonsp30

I. Gorton, A. Liu. Performance Evaluation of Altative Component
Architectures for Enterprise JavaBean Applicatioims|EEE Internet
Computing, vol.7, no. 3, pages 18-23, 2003.

A. Liu, I. Gorton. Accelerating COTS Middleware Tewlogy
Acquisition: the i-MATE Process. in IEEE Softwarpages 72—
79,volume 20, no. 2, March/April 2003.

(1]

(2]

(3]
(4]

5]

(6]

(7]

Page 7 4

] INDEXING: IC Value (6.14)Dlrich, DOA], Google Scholar, J-Gate, Scribd., .Docstoc and Slideshare ;Vol. II, Issue 1V, Aug 2013

